Atomistic mechanisms of intermittent plasticity in metals: dislocation avalanches and defect cluster pinning.

نویسندگان

  • Tomoaki Niiyama
  • Tomotsugu Shimokawa
چکیده

Intermittent plastic deformation in crystals with power-law behaviors has been reported in previous experimental studies. The power-law behavior is reminiscent of self-organized criticality, and mesoscopic models have been proposed that describe this behavior in crystals. In this paper, we show that intermittent plasticity in metals under tensile deformation can be observed in molecular dynamics models, using embedded atom method potentials for Ni, Cu, and Al. Power-law behaviors of stress drop and waiting time of plastic deformation events are observed. It is shown that power-law behavior is due to dislocation avalanche motions in Cu and Ni. A different mechanism of dislocation pinning is found in Al. These different stress relaxation mechanisms give different power-law exponents. We propose a probabilistic model to describe the novel dislocation motion in Al and analytically deduce the power-law behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The dynamics of dislocation interaction with sessile self-interstitial atom (SIA) defect cluster atmospheres

The interaction dynamics between dislocations and radiation induced sessile self-interstitial atom (SIA) dislocation loops in FCC metals are investigated. As a result of dislocation line flexibility, its equilibrium configuration is found to be sensitive to the elastic field of nearby SIA dislocation loops. Dislocation line flexibility also influences the critical stress to free trapped disloca...

متن کامل

Atomistic Simulation of Defect Structure Evolution and Mechanical Properties at Long Time Scales

This thesis is a computational and theoretical investigation of the response of materials' mechanical properties to a wide range of environmental conditions, with a particular focus on the coupled effects of strain rate and temperature. The thesis provides original contributions to the fundamental understanding of how the materials mechanical properties change, as manifested by defect structure...

متن کامل

Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations.

Probing the mechanisms of defect-defect interactions at strain rates lower than 10(6) s(-1) is an unresolved challenge to date to molecular dynamics (MD) techniques. Here we propose an original atomistic approach based on transition state theory and the concept of a strain-dependent effective activation barrier that is capable of simulating the kinetics of dislocation-defect interactions at vir...

متن کامل

Quenched pinning and collective dislocation dynamics

Several experiments show that crystalline solids deform in a bursty and intermittent fashion. Power-law distributed strain bursts in compression experiments of micron-sized samples, and acoustic emission energies from larger-scale specimens, are the key signatures of the underlying critical-like collective dislocation dynamics - a phenomenon that has also been seen in discrete dislocation dynam...

متن کامل

Study of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model

In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 91 2  شماره 

صفحات  -

تاریخ انتشار 2015